
e02 – Curve and Surface Fitting e02dec

nag 2d spline eval (e02dec)

1. Purpose

nag 2d spline eval (e02dec) calculates values of a bicubic spline from its B-spline representation.

2. Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_eval(Integer m, double x[], double y[], double ff[],
Nag_2dSpline *spline, NagError *fail)

3. Description

This function calculates values of the bicubic spline s(x, y) at prescribed points (xr, yr), for
r = 1, 2, . . . , m, from its augmented knot sets {λ} and {µ} and from the coefficients cij , for
i = 1, 2, . . . ,spline.nx−4; j = 1, 2, . . . ,spline.ny−4, in its B-spline representation

s(x, y) =
∑

i,j

cijMi(x)Nj(y).

Here Mi(x) and Nj(y) denote normalised cubic B-splines, the former defined on the knots λi to
λi+4 and the latter on the knots µj to µj+4.
This function may be used to calculate values of a bicubic spline given in the form produced
by nag 2d spline interpolant (e01dac), nag 2d spline fit grid (e02dcc) and nag 2d spline fit scat
(e02ddc). It is derived from the routine B2VRE in Anthony et al (1982).

4. Parameters

m
Input: m, the number of points at which values of the spline are required.
Constraint: m ≥ 1.

x[m]
y[m]

Input: x and y must contain xr and yr, for r = 1, 2, . . . , m, respectively. These are the co-
ordinates of the points at which values of the spline are required. The order of the points is
immaterial.
Constraint: x and y must satisfy
spline.lamda[3] ≤ x[r − 1] ≤ spline.lamda[spline.nx−4]
and
spline.mu[3] ≤ y[r − 1] ≤ spline.mu[spline.ny−4], for r = 1, 2, . . . , m.
The spline representation is not valid outside these intervals.

ff[m]
Output: ff[r − 1] contains the value of the spline at the point (xr , yr), for r = 1, 2, . . . , m.

spline
Input: Pointer to structure of type Nag 2dSpline with the following members:

nx - Integer
Input: spline.nx must specify the total number of knots associated with the variables
x. It is such that spline.nx−8 is the number of interior knots.
Constraint: spline.nx ≥ 8.

lamda - double *
Input: a pointer to which memory of size spline.nx must be allocated. spline.lamda
must contain the complete sets of knots {λ} associated with the x variable.
Constraint: the knots must be in non-decreasing order, with

[NP3275/5/pdf] 3.e02dec.1



nag 2d spline eval NAG C Library Manual

spline.lamda[spline.nx − 4] > spline.lamda[3].

ny - Integer
Input: spline.ny must specify the total number of knots associated with the variable y.
It is such that spline.ny − 8 is the number of interior knots.
Constraint: spline.ny ≥ 8.

mu - double *
Input: a pointer to which memory of size spline.ny must be allocated. spline.mu must
contain the complete sets of knots {µ} associated with the y variable.
Constraint: the knots must be in non-decreasing order, with
spline.mu[spline.ny − 4] > spline.mu[3].

c - double *
Input: a pointer to which memory of size (spline.nx − 4) × (spline.ny − 4) must be
allocated. spline.c[(spline.ny − 4) × (i − 1) + j − 1] must contain the coefficient cij

described in Section 3, for i = 1, 2, . . . , spline.nx − 4; j = 1, 2, . . . , spline.ny − 4.

In normal usage, the call to nag 2d spline eval follows a call to nag 2d spline interpolant (e01dac),
nag 2d spline fit grid (e02dcc) or nag 2d spline fit scat (e02ddc), in which case, members of the
structure spline will have been set up correctly for input to nag 2d spline eval.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

5. Error Indications and Warnings

NE INT ARG LT
On entry, m must not be less than 1: m = 〈value〉.
On entry, spline.nx must not be less than 8: spline.nx = 〈value〉.
On entry, spline.ny must not be less than 8: spline.ny = 〈value〉.

NE ALLOC FAIL
Memory allocation failed.

NE END KNOTS CONS
On entry, the end knots must satisfy 〈value〉,
〈value〉 = 〈value〉, 〈value〉 = 〈value〉.

NE NOT INCREASING
The sequence spline.lamda is not increasing: spline.lamda [〈value〉] = 〈value〉, spline.lamda
[〈value〉] = 〈value〉.
The sequence spline.mu is not increasing: spline.mu[〈value〉] = 〈value〉, spline.mu[〈value〉] =
〈value〉.

NE POINT OUTSIDE RECT
On entry, point (x[〈value〉] = 〈value〉, y[〈value〉] = 〈value〉) lies outside the rectangle
bounded by spline.lamda[3] = 〈value〉, spline.lamda[〈value〉] = 〈value〉, spline.mu[3] = 〈value〉,
spline.mu[〈value〉] = 〈value〉.

6. Further Comments

Computation time is approximately proportional to the number of points, m, at which the
evaluation is required.

6.1. Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed
value of s(xr, yr) can be regarded as the value that would have been obtained in exact arithmetic
from slightly perturbed B-spline coefficients. See Cox (1978) for details.

6.2. References

Anthony G T, Cox M G and Hayes J G (1982) DASL - Data Approximation Subroutine Library
National Physical Laboratory.

Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst.
Math. Appl. 21 135–143.

3.e02dec.2 [NP3275/5/pdf]



e02 – Curve and Surface Fitting e02dec

7. See Also

nag 2d spline interpolant (e01dac)
nag 2d spline fit grid (e02dcc)
nag 2d spline fit scat (e02ddc)
nag 2d spline eval rect (e02dfc)

8. Example

This program reads in knot sets spline.lamda[0],. . . ,spline.lamda[spline.nx−1] and spline.mu[0],. . . ,spline.mu[spline.ny
and a set of bicubic spline coefficients cij . Following these are a value for m and the co-ordinates
(xr , yr), for r = 1, 2, . . . , m, at which the spline is to be evaluated.

8.1. Program Text

/* nag_2d_spline_eval(e02dec) Example Program
*
* Copyright 1991 Numerical Algorithms Group.
*
* Mark 2, 1991.
*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

#define MMAX 20

main()
{
Integer i, m;
double x[MMAX], y[MMAX], ff[MMAX];
Nag_2dSpline spline;

Vprintf("e02dec Example Program Results\n");
Vscanf("%*[^\n]"); /* Skip heading in data file */
/* Read m, the number of spline evaluation points. */
Vscanf("%ld",&m);
if (m<=MMAX)

{
/* Read nx and ny, the number of knots in the x and y directions. */
Vscanf("%ld%ld",&(spline.nx),&(spline.ny));
spline.c = NAG_ALLOC((spline.nx-4)*(spline.ny-4), double);
spline.lamda = NAG_ALLOC(spline.nx, double);
spline.mu = NAG_ALLOC(spline.ny, double);
if (spline.c != (double *)0 && spline.lamda != (double *)0

&& spline.mu != (double *)0)
{

/* read the knots lamda[0] .. lamda[nx-1] and mu[0] .. mu[ny-1]. */
for (i=0; i<spline.nx; i++)
Vscanf("%lf",&(spline.lamda[i]));

for (i=0; i<spline.ny; i++)
Vscanf("%lf",&(spline.mu[i]));

/* Read c, the bicubic spline coefficients. */
for (i=0; i<(spline.nx-4)*(spline.ny-4);

Vscanf("%lf",&(spline.c[i])), i++);
/* Read the x and y co-ordinates of the evaluation points. */
for (i=0; i<m; i++)
Vscanf("%lf%lf",&x[i],&y[i]);

/* Evaluate the spline at the m points. */
e02dec(m, x, y, ff, &spline, NAGERR_DEFAULT);
/* Print the results. */
Vprintf(" i x[i] y[i] ff[i]\n");
for (i=0; i<m; i++)
Vprintf("%7ld %11.3f%11.3f%11.3f\n",i,x[i],y[i],ff[i]);

NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);

[NP3275/5/pdf] 3.e02dec.3



nag 2d spline eval NAG C Library Manual

NAG_FREE(spline.c);
exit(EXIT_SUCCESS);

}
else
{
Vfprintf(stderr,"Storage allocation failed.\n");
exit(EXIT_FAILURE);

}
}

else
{
Vfprintf(stderr, "m is out of range: m = %5ld\n",m);
exit(EXIT_FAILURE);

}
}

8.2. Program Data

e02dec Example Program Data
7
11 10
1.0 1.0 1.0 1.0 1.3 1.5 1.6 2.0 2.0 2.0 2.0
0.0 0.0 0.0 0.0 0.4 0.7 1.0 1.0 1.0 1.0
1.0000 1.1333 1.3667 1.7000 1.9000 2.0000
1.2000 1.3333 1.5667 1.9000 2.1000 2.2000
1.5833 1.7167 1.9500 2.2833 2.4833 2.5833
2.1433 2.2767 2.5100 2.8433 3.0433 3.1433
2.8667 3.0000 3.2333 3.5667 3.7667 3.8667
3.4667 3.6000 3.8333 4.1667 4.3667 4.4667
4.0000 4.1333 4.3667 4.7000 4.9000 5.0000
1.0 0.0
1.1 0.1
1.5 0.7
1.6 0.4
1.9 0.3
1.9 0.8
2.0 1.0

8.3. Program Results

e02dec Example Program Results
i x[i] y[i] ff[i]
0 1.000 0.000 1.000
1 1.100 0.100 1.310
2 1.500 0.700 2.950
3 1.600 0.400 2.960
4 1.900 0.300 3.910
5 1.900 0.800 4.410
6 2.000 1.000 5.000

3.e02dec.4 [NP3275/5/pdf]


