e02 — Curve and Surface Fitting e02dec

nag_2d_spline_eval (e02dec)

1. Purpose

nag_2d_spline_eval (e02dec) calculates values of a bicubic spline from its B-spline representation.

2. Specification

#include <nag.h>
#include <nage02.h>

void nag_2d_spline_eval(Integer m, double x[], double y[], double ff[],
Nag_2dSpline *spline, NagError *fail)

3. Description

This function calculates values of the bicubic spline s(x,y) at prescribed points (z,,v,), for
r = 1,2,...,m, from its augmented knot sets {A} and {u} and from the coefficients c,;, for
1=1,2,... splinenx—4; j =1,2,... spline.ny—4, in its B-spline representation

177

s(x,y) = Z cijMi(x)Nj(y)'

Here M,(z) and N;(y) denote normalised cubic B-splines, the former defined on the knots \; to
Ai+q and the latter on the knots p; to p; .

This function may be used to calculate values of a bicubic spline given in the form produced
by nag-2d_spline_interpolant (eOldac), nag 2d_spline_fit_grid (e02dcc) and nag-2d_spline_fit_scat
(e02ddc). Tt is derived from the routine B2VRE in Anthony et al (1982).

4. Parameters

m
Input: m, the number of points at which values of the spline are required.
Constraint: m > 1.
x[m]
y[m]
Input: x and y must contain z, and y,, for r = 1,2,..., m, respectively. These are the co-
ordinates of the points at which values of the spline are required. The order of the points is
immaterial.
Constraint: x and y must satisfy
spline.Jamda([3] < x[r — 1] < spline.lamda[spline.nx—4]
and
spline.mu[3] < y[r — 1] < spline.mu[spline.ny—4], forr=1,2,...,m.
The spline representation is not valid outside these intervals.
ff{m]
Output: ff[r — 1] contains the value of the spline at the point (x,.,v,.), for r =1,2,...,m.
spline

Input: Pointer to structure of type Nag_2dSpline with the following members:

nx - Integer
Input: spline.nx must specify the total number of knots associated with the variables
x. It is such that spline.nx—8 is the number of interior knots.
Constraint: spline.nx > 8.

lamda - double *
Input: a pointer to which memory of size spline.nx must be allocated. spline.lamda
must contain the complete sets of knots {A} associated with the x variable.
Constraint: the knots must be in non-decreasing order, with

[NP3275/5/pdf] 3.e02dec. 1

nag_2d_spline_eval NAG C Library Manual

6.1.

6.2.

spline.lamdalspline.nx — 4] > spline.lamda|3].

ny - Integer
Input: spline.ny must specify the total number of knots associated with the variable y.
It is such that spline.ny — 8 is the number of interior knots.
Constraint: spline.ny > 8.

mu - double *
Input: a pointer to which memory of size spline.ny must be allocated. spline.mu must
contain the complete sets of knots {u} associated with the y variable.
Constraint: the knots must be in non-decreasing order, with
spline.mu[spline.ny — 4] > spline.mu([3].

¢ - double *
Input: a pointer to which memory of size (spline.nx — 4) x (spline.ny — 4) must be
allocated. spline.c[(splineny — 4) x (i — 1) + j — 1] must contain the coefficient c;;
described in Section 3, for i = 1,2,...,spline.nx —4; 7 = 1,2, ..., spline.ny — 4.

In normal usage, the call to nag_2d_spline_eval follows a call to nag-2d_spline_interpolant (e0ldac),
nag-2d_spline_fit_grid (e02dcc) or nag_2d_spline_fit_scat (e02ddc), in which case, members of the
structure spline will have been set up correctly for input to nag_2d_spline_eval.
fail

The NAG error parameter, see the Essential Introduction to the NAG C Library.

Error Indications and Warnings

NE_INT_ARG_LT
On entry, m must not be less than 1: m = (value).
On entry, spline.nx must not be less than 8: spline.nx = (value).
On entry, spline.ny must not be less than 8: spline.ny = (value).

NE_ALLOC_FAIL
Memory allocation failed.

NE_END_KNOTS_CONS
On entry, the end knots must satisfy (value),
(value) = (value), (value) = (value).

NE_NOT_INCREASING

The sequence spline.lamda is not increasing: spline.lamda [(value)] = (value), spline.lamda
[(value)] = (value).
The sequence spline.mu is not increasing: spline.mu[(value)] = (value), spline.mu[(value)] =
(value).

NE_POINT_OUTSIDE_RECT
On entry, point (x[(value)] = (value), y[(value)] = (value)) lies outside the rectangle
bounded by spline.lamda[3] = (value), spline.lamda[(value)] = (value), spline.mu(3] = (value),
spline.mu[(value)] = (value).

Further Comments

Computation time is approximately proportional to the number of points, m, at which the
evaluation is required.

Accuracy

The method used to evaluate the B-splines is numerically stable, in the sense that each computed
value of s(z,.,y,) can be regarded as the value that would have been obtained in exact arithmetic
from slightly perturbed B-spline coefficients. See Cox (1978) for details.

References

Anthony G T, Cox M G and Hayes J G (1982) DASL - Data Approximation Subroutine Library
National Physical Laboratory.

Cox M G (1978) The Numerical Evaluation of a Spline from its B-spline Representation J. Inst.
Math. Appl. 21 135-143.

3.e02dec.2 [NP3275/5/pdf]

e02 — Curve and Surface Fitting e02dec

7. See Also

nag-2d_spline_interpolant (e01dac)
nag-2d_spline_fit_grid (e02dcc)
nag-2d_spline_fit_scat (e02ddc)
nag_2d_spline_eval_rect (e02dfc)

8. Example
This program reads in knot sets spline.lamda|0],. . . ,spline.lamda]spline.nx—1] and spline.mu[0],. . . ,spline.mu|spline.n;
and a set of bicubic spline coefficients ¢;;. Following these are a value for m and the co-ordinates
(x,.,9,), for r =1,2,...,m, at which the spline is to be evaluated.

8.1. Program Text
/* nag_2d_spline_eval(e02dec) Example Program

*
* Copyright 1991 Numerical Algorithms Group.
*

* Mark 2, 1991.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nage02.h>

#define MMAX 20

main()

{
Integer i, m;
double x[MMAX], y[MMAX], ff[MMAX];
Nag_2dSpline spline;

Vprintf ("e02dec Example Program Results\n");
Vscanf ("%*["\n]"); /* Skip heading in data file */
/* Read m, the number of spline evaluation points. */
Vscanf ("%1d",&m) ;
if (m<=MMAX)
{
/* Read nx and ny, the number of knots in the x and y directions. */
Vscanf ("%1d%1d",&(spline.nx) ,&(spline.ny));
spline.c = NAG_ALLOC((spline.nx-4)*(spline.ny-4), double);
spline.lamda = NAG_ALLOC(spline.nx, double);
spline.mu = NAG_ALLOC(spline.ny, double);
if (spline.c != (double *)0 && spline.lamda != (double *)0O
&& spline.mu != (double *)0)
{

/* read the knots lamda[0] .. lamda[nx-1] and mu[0] .. mul[ny-1]. =/
for (i=0; i<spline.nx; i++)

Vscanf ("%1f",&(spline.lamda[i]));
for (i=0; i<spline.ny; i++)

Vscanf ("%1f",&(spline.mulil));
/* Read c, the bicubic spline coefficients. */
for (i=0; i<(spline.nx-4)#*(spline.ny-4);

Vscanf ("%1f",&(spline.c[i])), i++);

/* Read the x and y co-ordinates of the evaluation points. */
for (i=0; i<m; i++)

Vscanf ("%41£%1f",&x[1],&y[1]);
/* Evaluate the spline at the m points. */
e02dec(m, x, y, ff, &spline, NAGERR_DEFAULT);
/* Print the results. */
Vprintf (" i x[i] y[i] f£[i]\n");
for (i=0; i<m; i++)

Vprintf ("%71d %11.3£%11.3£%11.3f\n" ,i,x[i],y[i],££[i]);
NAG_FREE(spline.lamda);
NAG_FREE(spline.mu);

[NP3275/5/pdf] 3.e02dec.3

nag_2d_spline_eval

}

Vfprintf (stderr, "m is out of range: m = %51d\n",m);

}

NAG_FREE(spline.c);
exit (EXIT_SUCCESS) ;

Vfprintf (stderr,"Storage allocation failed.\n");

exit (EXIT_FAILURE);

exit (EXIT_FAILURE);

8.2. Program Data

e02dec Example Program Data

7
11
.0

.0

NP RFRPRPPRPPRPERPPAPONNDNRE,PR,EROR

OO OWo U

1

0
1

.0 0
.0000
.2000
.5833
.1433
.8667
.4667
.0000
0.

HOOOOO

OO W N+ O

0
0

DPWWNR R~

1.0
0.0
.1333
.3333
L7167
L2767
.0000
.6000
.1333

8.3. Program Results

e02dec Example Program Results

O WNHF OV

1.
0.

0
0

D WWN R

x[i]

.000
.100
.500
.600
.900
.900
.000

PR WONNEFR, P, N0

y

0
0
0
0.
0
0
1

.8433
.5667
.1667
.7000

[i]

.000
.100
.700
400
.300
.800
.000

£

O WNDND - -

f[i]
.000
.310
.950
.960
.910
.410
.000

P WWNDNDN - N

[eNe]
N
o

.0000
.2000
.5833
.1433
.8667
.4667
.0000

NAG C Library Manual

3.e02dec.4

[NP3275/5/pdf]

